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Abstract — The present work uses the nonlinear, rotationally invariant equations of the magneto-
clasticity of anisotropic magnetostrictive materials to provide the basic elements of nonlinear
bulk wave propagation in these materials. In particular, near- and far-field solutions (the latter
being uniformly valid on long spatial intervals) from a harmonic source within the tramework of
the monomode hypothests are given using cither a straightforward expansion of the magnetoacoustic
solution in small parameters or a more refined multiple-scale technique. A bias magnetic field is
necessarily present and harmonics are generiated through all nonlinear features with a special
attentton to magnetostrictive couplings. A closed-form expression is deduced for the far-field
solution at the first order in the small parameters. In the case of an clastic resonator tuned on the
first partial mode and placed in a bias magnetic ficld, the expansion method provides the aniso-
chromsm due to magnetostrictive couplings at the second order. Anisochromsm caused by the
nonhinear purely clastic behavior requires solving the huerarchy of approximate boundary-value
problems to higher order. Inall, the work presents all the prerequisites for o forthcoming study of
nonlincar surfice magnetoelastic waves and a more complete study of nonlinear vibrations of
magnetoelastic resonators.

[. INTRODUCTION

In a previous paper (Abd-Alla and Maugin, 1987) we have deduced sets of nonlinear partial
differential equations and accompanying boundary conditions that govern nonlincar mag-
netoacoustic problems in the bulk and at a surface and that include terms up to the third
order jointly in the gradient of the displacement and the gradient of the quasi-magnetostatic
potential. This allows one to envisage nonlinearities of pure mechanical, pure magnetic and
mixed magnetoelastic origins.

Itis well known that the propagation characteristics of both bulk and surfiace waves
in centrosymmetric magnetostrictive materials (such as ferromagnetic polycrystalline
matcerials) can be utilized to build & number of signal-processing devices such as electro-
magneto-acoustic transducers (so-called EMATSs, Hauser er al., 1981; Ristic, 1983;
Thompson, 1981 ; Worley, 1971). The nonlinear magnetoelastic couplings have not recetved
much attention although “lincarized™ magnetostriction in the presence of a bias magnetic
ticld has been considered in both ferromagnets (Maugin, 19794) and paramagnets (Maugin
and Hakmi, 1984) with a view to studying magnon -phonon couplings and small-amplitude
wave propagation, and magnetostriction is one of the coupling mechanisms which atford
the conception of delay lines and transducers. However, contrary to piezoelectricity (which
is rather common but of a varying strength depending on the material) and piczomagnetism
(which is rarc), clectrostriction in clectrically polarizable bodies and magnctostriction in
magnetizable materials are nonfinear coupling phenomena. They have associated with them
astress, or an internal strain (see ¢.g. Maugin, 1979b). that does not depend on the direction
of the applied ficld (an electric field in the former case, a magnetic field in the latter) so that
it is of even order (c.g. at least quadratic), and not ruled out by restrictive symmetry
regulations, in the said field. From a rather different point of view, recent works (Maugin,
1985, 1988 ; Nelson, 1978, 1979 Plunat, 1984) have developed to some extent the ficld of
nonlincur electromagneto-mechanical wave propagation.

In the present work, with a view to studying the main nonlincar wave characteristics
of magnectomechanical signal processing devices (for example, resonators). we exhibit useful

t On leave from the University of Sohag. Fgypt.
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solutions of some nonlinear problems by using approximation methods (such as in Nayfch.
1973 ; Nayfeh and Mook. 1979 : Whitham. 1974) such as the straightforward expansion in
a small parameter and the multiple-scale technique. Regarding the main results of this
work. one finds. as for corresponding electromechanical problems. that these two methods
essentially yield equivalent results for a short distance of propagation. while the multiple-
scale technique is to be used if one wants to obtain a solution that is uniformly valid on a
long spatial interval. Theoretically. we have found that the nonlinearities obviously generate
harmonics in the magnetoacoustic field while tn the case of resonators the phenomenon of
anisochronism (relative change in velocity of the fundamental frequency component) is
placed in evidence. These phenomena are very similar to those obtained in electromechanical
devices (Planat. 1984 Maugin, 1985). However, there are also fundamental differences that
come from three facts: (i) the material body being centrosymmetric, the first existing
magnetoelastic coupling is of higher order than piezoelectricity for electromechanical
devices. This brings into the picture the second fact (ii) that the lowest order coupled
lincarized solution must necessarily involve a Aias magnetic field. Finally, (iii) there does
not exist for magnetic processes the equivalent of grounding (i.e. imposing a potential) at
a surface and this, of necessity, yields a matching of an internal solution for the magnetic
ficld to an external solution as soon as limiting (boundary) surfaces are involved. This is
the case for the “resonator™ configuration and this will also create some difticultics in a
forthcoming study of lincar and nonlincar magnetoclastic surface waves.

The needed noalinear magnetoacoustic equations derived in a previous paper (Abad-
Alla and Maugin, 1987) are given in Section 2. The lincar wave equations which provide a
natural basis (related to cigenmodes) to study all subscquent nonlinear and coupling
phenomena are dealt with in Section 3. More interesting for our purpose are the equations
obtained by lincarization about a bias magnctic ficld (Scction 4). The nonlincar cquations,
but for a monomode process, are given n Section 5. These equations that contain all types
of nonlincaritics, arce first exploited for bulk waves in Section 6 by using a straightforward
expansion in small parameters, As in other ficlds of mathematical physics [nonlinear (fluid)
acoustics, nonlincar elasticity, nonlineuar electromechanical processes], this yiclds only a
ncar-ficld solution and this limitation is remedied in Section 7 by looking tor u uniformly
valid far-ficld solution via a multiple-scale technique. The solution obtamned is close to the
celebrated Fubini-Ghiron solution but internal, spatially uniform stresses result from the
bias magnetic ficld involved in the zeroth-order solution. The approximation of classical
magnetostriction (i.c. magnetostriction is regarded as the only nonlinear process, nonlinear
elastic and purcly magnetic phenomena being discarded) is dealt with along the same lines
in Section 8. It is shown in Scction 9 that taking account of nonlinearities of all origins then
brings only an alteration in the coetlicients of the previous solution, Finally, the case of
elustic magnetostrictive resonators is examined in Section 10 by using a straightforward
expansion method. There is exhibited a defect called anisochromism which is directly
proportional to the square of the bias magnetic ficld and the magnetoacoustic coupling
coctlicient.

2. EQUATIONS OF NONLINEAR MAGNETOELASTICITY

The cquations of motion and the equations of the quasi-stationary magnetic field (i.c.
in the framework of quasi-magnetostatics for acoustic frequencics) for material points X
inside a regular body occupying the region D, of three-dimensional Euclidean space in the
reference configuration K of continuum mechanics may be written in the following material
form (Abd-Alla and Maugin, 1987).

3

0, = .
Pr (‘-1, =(Tx+Tu)x ()

and
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Bex =0, He= o4 (2a,b)

where we have used the convention that upper- and lower-case Latin indices refer, respec-
tively. to the reference Cartesian coordinates and to the present Cartesian coordinates of
material points X. We also employ the convention that a comma followed by a (capital)
index denotes partial differentiation with respect to the reference coordinates, and repeated
indices are to be summed in agreement with Einstein’s convention. The symbols pg,
u ==X Lo Br. D, ¢ and T, = TE + T, denote. respectively, the matter density
at the reference state. the elastic displacement. the nonlinear motion, the **Lagrangian™
magnetic induction, the “Lagrangian™ magnetic field, the magnetostatic scalar potential
and the total Piola-Kirchhoff (matter contribution plus field contribution) nonsymmetric
stress. The nonlinear stress constitutive equation in the material obviously considered as
an insulator is obtained for T}, on a thermodynamical basis as (Abd-Alla and Maugin,
1987)

5 g ,
Ty = 0| Crrarvliy v+ TRRMNPQU NP o +‘5I\'RJINPQAB".V.,V“P.Q“.4.1]

+ B ranOudy+ B,K"R.\INPQE’MS)NI‘P.Q} (3
while one can show that eqn (2a) takes on the form
llu,g’(,.x - BK’I,‘\I‘V(’3[,“.\[,,V)_A‘ + (l‘XA'l,.w.v(s:’l,’}.u s[Iv)_:\' - A?\'L.IINFQ(S:)L“.\l.»V“I'.Q).A' =0 (4
where we have set
'/';\‘nu‘v/'o = é( C‘KR‘\I.\’I'() + CA'RI'N‘SQ.\I) + CA‘()MN‘SRI' (5‘1)
H

Lo 1 N
1 \( KRMNPOAR + :C I\R.\IN,{U‘)IH'

+ g(v'»\'mm‘o‘sm: + (-‘KRMNI'L)‘).AII + CA’RI‘N‘)‘QM‘)‘AII} (5b)

I T

Biruy = gBA’RJIN + XavXkse F OxaOnn — gé.VM‘).A'R (5¢)

Biruvre = Biranep + %BAQJIN‘SRI‘ —ByvroXnn— B,,K,.‘,Xu,v - X.RNX.I\'I"SQM - XRNXA‘Q‘SMP
+ A rarkasOur + Xas XaxOrg +Oyp( ll‘).QM‘).KR —OxnOgr) +0xp( lzts.v.w‘suk —0pmOne)
+ i ( ééQ.V(SA'R —OxxOur) +0pp(Oxudyk — 104 vOxr) (3d)

Biruv = Brown + 0,00k +0xudne + 0510y ’ (5¢)

/-'A"L.w.vw = ;-A'L.ll.\'l'() + ‘).QL(SA‘M‘SNP - ‘s;\'Q(‘sLP‘).K.\I + %‘SP.V‘SA’L)

+0yat (Oxrdor = $0pp0xs) —Oox(OLadne —8.p0un)  (5D)
Har = Oxr + Xue- (5g)

The various material coefficients introduced have obvious tensorial symmetries and they
bear the following significance. The material tensors Cypywe Caomwrg And Crranpoas aT€
the tensors of elasticity coefficients of the second, third and fourth orders, at constant
temperature and zero magnetic ficld. The material tensors x5 and Yxguy 2re tensors of
magnetic susceptibilities of the second and fourth orders at constant temperature and
vanishing strains. The material tensors Byyxr, and Byykpp are the tensors of coefficient:
of magnetostriction of the first and sccond orders (in the strain), respectively. Finally, th
symbol Jd,, is a translation operator (shifter) from the reference configuration Ky to tl
actual configuration K, and vice versa.
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At a fixed regular (matenal) boundary ¢D, of the body equipped with unit outward
normal of components N. the field equations (1) and (2) are complemented by the following
boundary (jump) conditions in the absence of prescribed tractions and surface currents:

NT =0 (6a)
NB] =0 (6b)
[¢]=0 (6c)

where [..] denotes the jump (difference between the outside and inside values) of the
enclosure. We note that

= 1t & ’ A ! A R — A
By = D= BrowuvDitty s+ e Xxruv D HuHv — AxruvroDetiv vlipo.

3. LINEAR EQUATIONS

The part of eqn (1) which is linear in the rwo field variables is
frtig — Cypustty vy =0 N

where a superimposed dot denotes partial time differentiation. This is an equation of motion
for a lincar anisotropic clastic body (crystal). A solution of eqn (7) may be sought in the
form of a plane wave travelling in the direction of unit (material) vector 4 with velocity V.
We write

iy = by exp [{{wt—K-X)] (8)

where K = k4 &, real, represents the wave number, o is the angular frequency and b is the
amplitude. Carrying (8) into (7) we obtain

(Crrmndnds —pu VE‘SA!R)*”.;' =40 9
This is the usual eigenvalue problem for the acoustic Christoffel tensor Mgy (4) defined by
Cea(A) = Crpuvhvic = Dyp(d) = Fey(—4). (10

Let m, = pe(V*)?, 2 = 1,23, be the three cigenvalucs of [y, The fact that Cyauyy < Cuy
(in Voigt's notation with a,ff = 1,2,...,6) is symmetric positive definite guarantees that
the three eigenvalues are positive and, in general, distinct from each other. The polarizations
b of the associated vibrations are orthogonal to one another. Because of the general degree
of anisotropy these vibrations, in general, do not correspond to purely transverse or purcly
longitudinal (with respect to 4) vibrations. The eigenvalues mi, are obtained by solving

dCt |rR"(i)~IH(5R”l =O (ll)

which is a cubic in m for a fixed 4. The gencral solution of (7) is a lincar combination of
the three elementary eigenmodcs u’, i.c.

3

uy =Yy Aty (12)

3=

where the A, are arbitrary amplitudes. Let
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= b .z fixed (13)

V bxbik

denote the director cosines of the eigenmodes. The {I*; 2 = 1.2.3} form a new triad of
orthonormal vectors, hence a Cartesian basis on which a general motion can be described.
In particular, each mode then is characterized by a scalar displacement «* which can be
expressed in terms of time and the curvilinear abscissa X = 4-X = i, X. We have

= Aa, 0y,  (no summation on 2). (14)
Substituting from this into eqn (7) we get

Pr Z Wy — Crryy Z Aviglyilee = 0. (15)

This vectorial equation (three components) can be projected onto the basis {I*} on account
of the fact that

Gl = 0, Y13l = Sy, (16)

By virtue of the very definition of an cigenmode, one obtains thus
PRl = My (17
with
m, = Cypuvinruldle = Dyl urlk. (18)

4. THE LINEARIZED EQUATIONS

When one studies the propagation of small disturbances in elastic displacement @ and
magnetic field § (with associated potential ¢) superimposed on a state of spatially uniform
magnetic ficld H” and zero displacement, by lincarization of eqns (1) and (2) one obtains
the following linear equations which resemble those of linear piezoelectricity but for the
fact that the coupling tensorial coetlicients Fi, v and F¥,y are not the same ones :

Pt — Crrmstivesk + Fox®wx =0 (19)
Hxrix+ Fluniiyng =0 (20)
where (here the bias field H” may have any direction)
F;.w.v = BruvHi, Hy= — "L (21)
Frx =2ByunHy. (22)
By projecting eqns (19) and (20) onto the basis {1’} of Section 3 we obtain

PR{T" = m,0xx —F'(I;n (23)

fex+Y Friy =0 (24)
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where

F =Y Fisiginl: (25)

= Fuvinigly. 0= !‘KL';~K';-L- (26)

We can write eqns (23) and (24) in the following form (for a fixed x) by considering the
following scaling (L and T are characteristic length and time scales),

u= Lu*, X=LX*
t=Trt*, H=H'H* H" =|H"| (27)
bx = H'¢%-

so that the above equations become dimensionless. We have thus (omitting the asterisks
and with the simplified notation i, = ¢u; ¢t u, = Cujéx, x = X),

u,—u,, = —fb.. (28)
o+, =0 (29)

where we have set
fo=BHY m. f, =B (30)

Substituting from (29) into (28) yitelds the unique cquation

w,—K ‘u . =0 an
with
. 1
K* = |+i2,,,: l—ey., ¢, =80, (32)

where ¢, may be called the magnetoacoustic coupling coeflicient (it describes the reduction
in elastic wave speed as a result of magnetostrictive couplings —see Maugin and Hakmi,
1984).

With a boundary condition u(x = 0,1) = U,(1 —cos wr) at the source, eqn (31) has the
obvious solution

u=Uy(l—=cos ), ¥ =uwrt—kyx, k,=w/K. (33)

5. NONLINEAR MONOMODE EQUATIONS

Projecting the nonlincar equations (1) and (4) onto the basis {1’} of Section 3 we
obtain

peil’ = m,u.’u +Z r,ﬂ;-(“{{r wy) g+ Z Ax{lyd (“{ft "f’x“',sx),x + Bx(‘f’,.t ’/’..t)..t +Z [}ns(‘b..t ‘/).x“‘fx),r
By Bo.d il
(34)
and

b xx — Z Bi(dx “‘.ft Y+ }»7‘((15: ).?t - Z /'-};-,»(d’.xll_[f: )y =0 (35)
# B

where we have set
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rxﬁ-,- = y’KRM‘\‘PQ;-N;'Q;-K["W[‘:’[.’I‘i A

Axu-,-o = 5’KRM.VPQ,{B;-A\";-Q}-B'iKI.’Wle’[(.Z[;2

B, = BZR.HV}-M;'.VAK[;

Bxﬂ = B,I'\"RMVPQ;-‘\I"-\';-Q;-KII."J; L (36)

H= Hgrigie

Eé = B’IY\'LM,V":K':-,\';-L[{{I

'r'z;, = ';-'A"L.W.VPQ;-L':-,\"{Q;-K[{r[;
X = AkLuvAriurviy. J
Therefore, the nonlinearities cause a mutual coupling between eigenmodes (case where f
and;or 7 are different from x and 8.y and/or ¢ are different from 2), as also a self-coupling
of each mode (for f and/ory = z.and f.yand, or & = x). At this point the following remark
is of importance since it will greatly simplify further considerations. The three eigenmodes
of the linear case are orthogonal and propagate with different velocities. Therefore, when
one specific mode is excited by the magnetic field (or a mechanical agent), and the other
modes correspond to eigenfrequencies which are sufficiently remote from the excited one,
the latter is preponderant and couplings with the other modes correspond to corrective
terms which may be neglected in a first approach (cf. Sugimoto, 1978 see also Maugin,
1985, p. 36). This corresponds to the working hypothesis of a monomode process. This
hypothesis is commonly considered in the case of electromechanical interactions both for
bulk waves (c.g. Planat ef al., 1980) and surface waves (e.g. Kalyanasundaram, 1984). In
this condition only the terms corresponding to a sclected 2 = ff =7 = J in eqns (34) and
(35) arc kept and, using the notation introduced for eqn (28), and omitting the superscript
a, eqns (34) and (35) take on the following form.

m r R7A N 2B B .
U~y [+ u+ wj|l=  pbo+  (Piu), (37
P m m Pr Pr
and
i, — B () + () =L (poul), = 0. (38)

Equations (37) and (38) can now be expressed in dimensionless form by using the same
scaling as in eqns (27). Performing the nondimensionalization and omitting the asterisks
to lighten the notation, we write eqns (37) and (38) as

=t (L4270, +38u7) = (9] + Fi(dlu). (39
and
boe—Prp ) + ()= APai), =0 (40)
where we have set (orders of magnitude are mentioned)
~
r
7= =0()
m
. A _
§===0(10 10"
m
B(H")* B(H")*
B = ..(_,;I_l_ = };;l_ =0(10 %)
) >~ (1)
}, = 8 o
/: - m B
((H")*
r = X~(~—7——)— =0(10""%
=2 =0
I J

It is for these orders of magnitude that 8° =0(107%). A =0(10"*) and ¥ = 0(10~°).
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For the sake of simplicity we shall discard the last term in each of eqns (39) and (40).
obtaining thus

= (1 + 20, +30u) = B (7)), (42)
G~ Bt + ix(¢)), =0. (43)

We assume the following boundary condition at the source (harmonic source with a single
frequency normalized to one).

u(x =0.1) = Uy(1—cos 1) (44)

while, initially (i.e. H" is set along the x-axis or has an intense non-zero x-component at
least)

¢ (x.0) = —H" =const. ¥Yx (1.e. VH" = 0). 45)

6. SOLUTIONS BY MEANS OF A STRAIGHTFORWARD EXPANSION

In accordance with the methodology of the perturbation method of Poincaré (straight-
forward expansion in a small parameter), we assume that the displacement component
and the gradient of the potential ficld ¢ depend on the space time propagation variables
xand ¢ via an expansion in power series, for instance

u(e ) = ™D+t (e D+ Gt (e 0+ (46)
and

px, )= —H" +.p (., )+ (v )+ - (47)
where the small parameters ¢ and ¢, are introduced on account of (41) as (classically

(V¢
u, =010 )

o=y =B =000 *to 109
(48)

€= faug =% =010 %),
That is, ¢, and ¢, are small parameters of the same order, i.c. ¢ = 0(¢,).
We substitute from cqns (46) and (47) into eqns (42) and (43) and set separately equal
to zero the coetlicients of various powers of ¢, and ¢, obtaining thus the following hierarchy

of coupled one-dimensional magnetoacoustic problems,

® Order one in ¢, and ¢,

W =M =0 (49)
DB H U = 0. (50)

On account of the boundary condition (44), eqn (49) integrates at once to
' = Uy(l —cos W), W =1t—ux. (51

Substituting now from (51) into (50) one gets
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W= —B.HOU, cos V. (52)

With ¢'"' =0atx =0, =0,since ¢\ = —H'", we obtain

o\ = B-H'"U, sin \P. (53)
® Order twoine¢,and e,
We have the equations
=l = () = 2B H OB (549)
and
2 = Bl ™) — HOW] 4 b H gL = 0, (55)

Carrying (50) into (54) one has an equation involving only elastic displacements:

One seeks a solution ¢! of this equation in the form (accounting for (51) in the right-hand
stde)

V(1) = A(x) cos 2W 4+ B(x) sin W+ C(x) (57)
and, by using the method of “variation of constants”, under the condition that
A(x)cos W+ B(x)sin M+ C'(x) =0
we can find the spatially dependent coeflicients as

5

U
Ax) =17y 70

B(x) = 2, Uyx > (58)

UZ
C(\‘) = —'7 _52 .\‘—‘21:," U()-

/

Then after some calculations which amount to substituting from (57) and (58) into eqn
(55) we obtain ' as

G\ =B H U 27Upx cos 2P+ (B, —7)U, sin 2W
=2, sin W4 (x—28.8,)H® cos W}. (59)

This can be integrated once in space with ¢47(0,0) = 0 to obtain ¢'?. However, we nced
only (59) to proceed to the next order for the clastic displacement. ¢4 is obtained as

P = — B H Uy yUx sin 2 =2, x cos W= 4f8,U, cos 2% — L H'™ sin W+ 18.U,}.

® Order three inc, and ¢,
We have the equations

uP =2 = (") A3 )  + B [($L) = 2H VY] (60)
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DB (DU + (D IW™) — H VU2 + W [H ™Y — H(¢) ] = 0. (6])
The expressions of &', &'V, ¢ and @' suggest to seek u'™ in the form

u'? = D{x) cos 3I¥ + E(x) sin 3¥ + F(x) cos 2W
+G(x)sin 2¥Y+ H(x) cos W+ I(x)sin ¥ (62)

and varying the “constants™ allows one to find the spatially varying coefficients as

F(x) = 1Uplen (3B + 27U = )] x
G(‘:) = —'am;'Uéx:
H{x) = Up[ Y + Upy )x" + 1U0x]

, -

I(x) = = Uylen H" (3 =282 + Ui + 1) )

4 (63)

on the condition that

D7(x) cos 3P+ E7(x) sin 3+ F(x) cos 2W+G'(v) sin 2

+H () cos WH+I{x)sinW =0, (64)
We could proceed to ¢! and thus ¢\”, and then to the next order to the price ol more and
more intricate algebraic caleulations. However, the computation up to the order of '™ and
¢\ is suflicient to exhibit (i) the generation of harmonics of the source signal, (i) the fact
the #'® contributes to the propagating component at the original frequency, and (iii) that
the expansions obtained via the straightforward perturbation method are not uniformly
valid in space since a growth like 27 is observed for the «'” component, and this is physically
unsound far from the source. Therefore (46) and (47) correspond to a so-catled near-ficld
solution, To obtain a solution vald far from the source (so-called far-ficld solution) one
needs to envisage a multiple-scale technique. This ts discussed in the next section. Before
turning to this, some other comments are in order,

Comments on the methodology. Herein above, following previous works exemplified
by the one of Thompson and Tiersten (1977), we have used a method of “variation of
constants™, with certain constraints imposed on these, e.g. the equation that follows (57),
or eyn (64), which allow one to determine the necessary factors of trigonometric functions
in the «!” and «'" solutions. This is also used below in Section 8. The arbitrariness of such
constraints must be noted. As a matter of fuct, Daher and one of the present authors (Daher
and Maugin, 19894) have recently commented upon this aspect of the “source problem™
in acoustics, clasticity and piczoclectricity. In the elastic monomode case, an exact solution
can be obtained by using the method of characteristics (see Maugin, 1985}, For small
amplitudes this exact, but implicit. solution can be cxpanded yiclding an explicit solution
of the type of (46). This expansion docs not exactly coincide with the result of the direct
Poincar¢ expansion, the spatially varying coeflicients of the representations of 4™, ', etc.
being, in general. different. Daher and Maugin (1989b) have shownt that the results could
be reconciled if, instcad of constraints such as (64) onc imposed a continuity or continuation
argument for the spatial derivative of the higher-order components 4 of the displacement,
The reason for this is altogether clear, The initial-boundary condition (33) is entircly
accounted for by the 4' solution. For higher order components, apart from a possible zero
value at the source (only the fundamental should be present there), we have stated no
condition. But it scems natural to assume that the components of order higher than zero

+ Sce also Daher and Maugin (1989a). The same problem s commented upon by Cantecll e af. (1987},
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in the stress should be zero at the source, and this we can impose in the form of the
“continuation” condition for x =0,t=0:

This. indeed. in the purely elastic monomode case, gives “‘constants™ of integration in
agreement with those obtained by expansion of the exact “characteristic’ solution. Obvi-
ously. the discrepancy observed is not so much important for very short travelled distance
and the qualitative behavior remains the same.

7. UNIFORMLY VALID FAR-FIELD SOLUTION

We now apply a multiple-scale technique for which one classically introduces a slow
space variable s = ex and set

u(x.0) = @(x.5.0). ¢, = b lx.5.0). (65)
Then a Poincaré expansion is made for 4. We note that
u, =1, u, =,

- - -~ -~ 2~
u, =4, +aid,, u. =1, +2d8. +cu, (66)

(/)\ = (5\‘ (b\\ = (’;\'+((/;‘\

where ¢ = ¢ = ¢,. Then
0= es, D Foatt s )+
Y 7 st 250 (67)
.= —H'+, (D) +GH (s, )+ -

Substituting from egqns (66) and (67) into eqns (42) and (43) we obtain the following
hicrarchy of cquations,

@ Order one in ¢, = ¢,

- =0 (68)
P+ B HEY = 0. (69)

® Order two in ¢, = ¢,
= = 200 4 () = 2B, H LY (70)

and
o ~ il >~ 1y =0 N -
P+ PN = Fp V@D + B H ) = L+ 2B HOED + W H L) = 0. (T1)

We may consider for 4'® a solution in the form of a right-running plane wave as
G = F"W.5), W=(-x (72)

where ' is an arbitrary function and s is a parameter. The dependence on s is specified
at the next step. We have
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A% = eFOIY, @ = R0

B = —CFVeY. B0 = EFYY (73)

Then eqn (69) yields

ety 'O)E:F‘m v
= —f. — 4
xx B-H 6‘{"_ ( )
Substituting from eqns {72)-(74) into eqn (70} one obtains
@:Fqn) FF“” E:F((» a;’F(m
-(I)__~(I7)= =2 - S . ) 5
e =i (858‘? e e T e (73)

We shall avoid the production of secular terms through the right-hand side of this equation
by imposing that this right-hand side vanish, obtaining thus the secularity condition

(.}:Fm, {1F¢ 1} ‘-:ZF( ay ;.:F( 13
avaw T ap apr T gy =0 e
If we set
Fo 7
o n
7
then
7!:% ‘}‘( i3} -
¢ i £p
G = 5= " a 75 (78)

and we can write (76) as the simplest (first-order) nonlinear equation of wave theory as

i A
oG oG
e '} 79
a7 oW (19

The solution surfaces of this equation are known as (Whitham, 1974)
G = A (W —7sG™) (80)

where # is an arbitrary function. Its expression is determined by the source condition. For
an excitation such as u(0,1) = U,(1 —cos 1), t > 0, eqn (80) takes on the form

G™ = —U, sin (¥ —75G™) 8hH

or

G™ ) G
- —(7; = sin [‘?4-}‘{1.»?(—— v. )} (82)
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Setting
(=¥—+——. Lg=—~ (83)

where one can recognize in L, the breaking distance for shock-wave formation in nonlinear
wave theory (see Nayfeh and Mook, 1979 ; Beyer, 1974), we rewrite {63) as

—(G'"|Uy) =sin (84)

with, for further use,

dw = (1 - —g- cos ;) dc. 85)

8

The solution (82) or (84) is implicit and, therefore. not very convenient. To find an explicit
solution one considers a Fourier series expansion

—(G™Uy) = Y. B, sin n'¥ (86)
A=l
with cocflicients B, given by
1 [ Gm))
B, = - — —— Fsin A% dW.
3 KJ; ( A sin H &7

Using now the transformation (83)-(85) we have

l 2 s
B = J sin C[:sin n(C«- Li,, sin g)( - Zg cos g)} g (88)

which integrates to (Abramovitz and Stegum, 1965)

_ 2U,(ns/Ly)
B.=~ (ns/Ly) (89)

where J, is the nth Bessel function of the first kind. Thus the explicit solution for the selected
source 1s given by

2J (m/{,g)

G = U, "2_:1 7L n (n'¥) (90)
and thus
Uy & nsiLy) _
F= - “; Tl < {(n'¥) +const. o
and, via (72) and (77)
x 2J,(ns/L
i = U“[ "; (—”%’7% cos (n‘f‘)—v-s,,,(x/l,,)]. 92)

The solution (90) or (92) is of the same type as the well known solution of Fubini-Ghiron
(1935) in nonlinear acoustics. [t is built of harmonics with pseudo-periodic coefficients. The
displacement solution (92) in addition involves a term proportional to the phase or the x
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coordinate. This corresponds to a spatially uniform straint due to the presence of the bias
magnetic field and magnetomechanical couplings. If necessary. this can be translated in
terms of a constant internal stress as is the case in the magnetostriction of uniformly
magnetized bodies (see Maugin, 1979b).

8. SPECIAL CASE: CLASSICAL MAGNETOSTRICTION
We next proceed to linearize eqns (1) and (2a) in terms of the elastic displacement but
not of the magnetic field. In this case we obtain the following two equations which we
shall refer to as those of classical magnetostriction (compare the fully linearized case in
Section 4):
Prli, = 0o Crrystivis + BXrus® e dv)x (93)
xePon — Brous(@ Lty ) g = 0. (94

By projection onto the orthonormal basts {I*} of Section 3 we have

Prlly = M iixe + B;(d’.i).{ 95)
fipe = Byt =0 (96)
7

where we have sct

m, = ('KRSI‘V}-‘\'/'K[‘I[;C =1y Uyelk

Uy = CrrmvAnis
B, = Bygunisivigly 97

" PR
p= Byrynbnty "-1./(\'

= Ay
Having now recourse to the monomode hypothesis, introducing dimensionless quantities,
dropping the index x and asterisks and using x instead ot X, we have the following
nondimensional system ol two partial differential equations [compare the system (42) and
(43)]:

Uy~ U = /;I((b\z)‘ (98)
boo—Br(d ), =0 (99)

f? _ B

po= " 00 0, p=" =0, (100)
m n

!
Substitution of ¢, given by eqn (99) into eqn (98) yiclds
U,—u, = ﬁlﬂ:[((pr):uu + 2((p()3“\]' (lo|)

In the sequcl of this section we treat eqns (101) and (99) by the same methods as in the
fully nonlinear case.

+ Spatially uniform strains can also appear in this type of solution for purely clastic bodies, depending on
the type of initial-boundary conditions. For these, see Cantrell et al. (1987).



Harmonic generation and anisochronism in magnetostrictive materials

8.1. Solution by means of a straightforward expansion
We consider expansions [where the ¢s are defined in eqns (48)]

(e, t) = e+ +edut P + - -
bulx.0) = —H" 4+ +cdold + -

and this results in the following hierarchy of coupled systems.
® Order one in ¢, and ¢, (with ¢, = 0(¢,))

a
“:10) —U_(“) =0

(‘F‘)+ﬂ:[_{10)l‘(“2i =0
with direct solutions in the form
'™ = Ug(l —cos W), ¥ =r—x
P = =B HOUY = —B,HMU, cos ¥
for a source condition u(x = 0.1) = Uy(1 —cos 1). By integration one finds
P = B UGH™ sin W,
® Order two in ¢ and ¢,
W =V = =2, 4™
G =B~ HOWY + (™) ] =0,
a system which has the solution

' = A(x) sin W+ B(x) cos W+ C(x)

with

A(x) = 2, U, x
B(x)=0
C(.T) = _?sz U()

under the condition that
C'(x)+ A" (x) sin ¥+ B'(x) cos ¥ = 0.
Obviously, from (108) and (106) one also obtains
¢ = BIHOU[-28 H™ (x sin W+cos W) + U, sin 2¥]

and this integrates to

2 3 2 U
P = ﬂgH“”UO[—ZB,H‘"’ xcos W+ 7—” (cos 2¥ — l)].

697

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111
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® Order three inc, and ¢+

a:[)_ £2 B — ‘)B ﬁ {He(n- ___BHei))Gszt()u{tf)} Hcm(p{!) am] {“2
and

M)___ﬁ[ H(ﬂ\ ()+¢H) (H+¢’(; rm ¢¢|> (1’+¢") r‘m]=0. “13)
After some calculation eqn (112) becomes

S =13 = g, B Ug[— 48, H ™ (x sin W +cos W) + 30, sin 2%, (114

By integration this yields

u'" = D(X) sin 2W + E(x) cos 2W + F(x) sin ¥ +G{x) cos ¥ (115
with
D(x) =0
Flx) = =4t Usx
Gx) = 21:3: U()-Vz
F(x) = — §i:,,,{33 Uix.

(116)

This global solution up to order three in ¢ and ¢, exhibits the generation of harmonics due
uniquely to magnetoclastic couplings of the magnetostrictive type (this is certainly not very
efficient) but the solutions obtuined are not uniformly valid along the spatial axis.

8.2, Solution by meuns of the multiple-scale technique
Weset {t = ¢, =¢,)

s=ex, w0 =), () = ([.:-‘(,\‘, s 1) (L7

so that egns (46) and (47) hold true, and then we consider the expuansions (67). Now we
obtain the following hicrarchy of systems.

® Order one in ¢ and ¢,

@) - gl =0 (118)
O+ B = 0. (119)
® Order two in ¢ und ¢4
= = 20 2, 0 (120)
P+ B = Bol(— HOFY + FOED) + (= 2H D + G = (121)

where egn (119) has been used to trunsform eqn (120). We need not consider higher orders.
The solution of cqn (118) as a right-running wave again is

~(m - {-m)(‘? V) \{I =f—Xx. (122)
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We proceed as in Section 7 but now the secularity condition (76) is replaced by

EZPO) 82F(0)

— = 12
e e 0 (123)
or, setting
a[:(())
W= - 24
G v (124)

we have the equation

6‘36(0) EG(O)
& e 0 (129

which is a linear first-order partial differential equation which integrates immediately by
the method of characteristics to

G = HA (Y +ens5) (126)

where the function #° will be specified by the source condition. For a source (44) we have
thus

G = U, sin (W+¢,9). (127)
By integration this produces the displacement solution
@ = F® = /[l —cos (¥ +¢,5)

= Uy{l =cos [t —x(1 -&.)]}. (128)

9. REMARK ON EQUATIONS (42) AND (43)

If we keep the complete cquations (42) and (43) with nonlinearities of all origins and
use the straightforward expansion method in terms of the small parameters ¢, and ¢, at
order one in these parameters we shall obtain the same system as (49) and (50) while for
higher order we shall have the following.
® Order two in ¢, and ¢,

u =l = v )~ BLHY Q9L — HOul) (129)
P2 = Bol( ) = H UL+ S H O ¢+ AH O (™), = 0. (130)
® Order three in ¢, and ¢,
- 5 3 3
' =l = 27 ) A S ) = 2B H O P
+H() = 2B HO (L uP) 4 B H WY, (131)
(hH —,’)‘:{((l)(”ll“)) +(¢:2)"m)) . H(O)u(‘.')
vy - X X x < x 1) XX

+ [ H D = HO (@) ] = (@) — HO M) ] = 0. (132)

This case ts no more difficult to deal with than the somewhat simplified case of Section §.
In particular we obtain
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O = Ug(l—cos W), ¥ =tr—x

W= ~B,H"U, cos ¥ (133)
o =B HOU, sin ¥

S
il

and
" = A(x) cos 2¥ + B(x) sin ¥+ C(x)
Ax) = "'gﬁx
. (134)
B(x) = ﬂonH(O)A(I +2f:)x
w32 .

C(x) = — ’_71.\-—/31 Uy HO (1 +28.)

while

A
T:l stn 2W +2yU,x cos 2¥

(\:‘) = H“))Uoﬂ:{[Uu(ﬁ.‘—}')+/

— [ H™ (14 2,)x sin ‘P—[/f.(l +2,) - f]u“"" cos ‘P} (135)
which, by integration, yields

b = — /1“"(/(,/:2{;@‘,.\‘ sin 2% = B, 1 (1 +28,)x cos W

l i ‘ 1 p
v e 1 M
- 2<U(,/f:+ /13) cos 2¥ — by HO sin W+ 2(U(,/{3+ﬁl>}. (136)

A comparison between these results and the results (58) and (59) reveals that the only
difference is in additional terms which only alter the value of some numerical coeflicients
[e.g. 1, is replaced by .+ 1/2, (f.~7) replaced by (f,—3)+(4/8-Uy), 3/2 replaced by
(1/2) = Bo(1+25)].

10. NONLINEAR VIBRATIONS OF RESONATORS

We now consider a medium of finite extent (length 24) in one of its dimensions, pliane
waves travelling back and forth between these two limiting surfaces (Fig. 1). This may be

z
Y
/|
4 °
Sl H
e == ]
‘-h 0] +h X

Fig. 1. Elastic resonator.
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called a resonator if the vibration ts adapted to the thickness 2h. We want to examine the
effects of nonlinearities on this resonance phenomenon when the end surfaces x = +h are
free of stresses. We shall have to solve both internal (for {x] < h) and external (|x| > A)
problems. For |x| > & we have a vacuum for which Maxwell's magnetostatic equations
reduce to

do =0 (137)

For |x| < A we have eqns (39) and (40) with the last terms neglected (for a one-dimensional
monomode motion) :

= o (1 4+ 27 +3013) = (@), (138)

oo — B2 u) + Ex(@). =0, (139)

the estimates (41) holding true. We also need the boundary conditions at |x| = 4 in the
same nondimensionalized form. We have Ny = (+1,0,0) at x = + A and it is not difficult
to show that the conditions (6b) and (6¢) take on the following form ;

[—d+BAbu) —axdi] =0 (140)
[¢] = 0. (141)

0.1, Treatment by means of the straightforward expansion

The travelled distance 24 is certainly small as compared to the characteristic distance
Ly introduced in previous sections. Accordingly, we need not bother with questions of
validity over long spatial intervals and it is quite suflicient to address the problem of solving
stmultancously eqns (137) through (141) by using the fuct that the parameters ¢, and ¢,
defined in eqns (48) are small and considering naive, straightforward expansions in these
small parameters assumed 1o be of the sume order. We set thus

u(x, ) = ", D)+ G (G D+ Gd e o+

bov.r) = —H + D (e, )+ P (6, 1)+ . (142)

Substituting from {(142) into eyns (138)-(141) we obtain the following hicrarchy of boun-
dary-value problems (in fact, matching with an external solution insofar as ¢ is concerned).

® Order one inc¢, and ¢,

W= =0 ; ; (143)
or jxi <
B+ B HOUY = 0 Il <k (144)
W =0 = (145)
[0 + B HO® — L] = of I =0 (146)
® Order two inc, and ¢,
u =l =y (™) =28, H VL) (147)

& =Bl = H U]+ I H L) =0 for |x| < k (148)
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u(l) =0 (149)
tix} =h.
IQS‘ 2) ﬂ H(m nl)+¢(l) (0))+ XH(O) ¢(l)] a I'CI (|50)
® Order three in ¢, and ¢,
tl‘,,:’ ( )= 2. (u“” (I)) +() (l)l) +ﬂ [(¢(l)) 2H(0)¢(ti> “5”
l‘l B [¢H| (l)) +(¢( M (U)) H(U)ll“:‘)]
+ HY QI —H" Py ] =0 for x| <h (152)
ud =0 (153)

l(bt‘,‘) _/)):( _ HHH“(‘Z) +¢l‘l)"‘(‘I) +¢_(\:,l((\'|)))
+ A HO (=36 +2H )] =0 at|x] =h (154)

The solution of (143) obviously is a superposition of an incident wave with wave number
K = | and a reflected wave with wave number K = — [, hence

0 UU
u? = ~lcos (1—x)—cos (t+x)].

-

U™ = (U, sin ¢) sin x. (155)
This is a standing wave. The boundary condition (145) imposes that

n 3n S

n
=N_= (156)

h=Q2q+1) =5 33

IJ:Q

where ¢ is an integer and N = 2¢+ | is called the partial mode of the elastic resonator.
Also, from (144), we get

pV = =B HPWY = B,H U, sin ¢ sin x. (157)

We look for the field solution #'" = —¢'" for |x| < 4 on account of the fact that ¢V
satisfies (157) inside the slab, |x} < &, eqn (137) outside the slab and the jump conditions
(146) across the interfaces. Outside the slab

SV =0 for |x| > h (158)
with
$—=0 asjx|— 0. (159)

Equation (158) yields ¢\ = C, and ¢'"* = C,x+ C,, but both constants C; and C,
must vanish by virtue of (159). Thus

Pl = 0. (160)
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We recall that

[o]=-[H"]=0. (161)
Also. from (157)
W= ~B.H'"U, sin ¢ sin x (162)
which by integration gives
d M™M= B H' " U, sin t cos x+C (1) (163)

where C, can be determined from the condition (146) which, on account of (138). (160)
and (161). can be rewritten as

¢((I)im(x = ih) - 0 (164)
Consequently
= —f,H"U, sin t cos h (165)
and
x4/ x—#
dN =28,H"U, sin t cos (r;—:) cos (\ ’1> for |x| < A. (166)

Now we can proceed to the 1! solution.

10.2. Anisochronism
Upon substituting (157) into eqn (147) we obtain

u —u = —1yU3 sin 2x(1 —cos 2¢) - 2¢, U, sin ¢ sin x. (167)
This is to be integrated between —h and +h on account of the limit conditions (149). The
solution of eqn (167) obviously is the sum of a particular solution and the general solution
of the homogencous equation. Therefore, we assume a solution in the form

WP (x, 1) = A(x) cos 2r+ B(x) sin 21+ C(x) sin t+ D(x). (168)

Substituting in eqn (167) we obtain a set of problems for ordinary differential equations
for A, B, Cand D as

A" () +4A4(x) = — WyU} sin 2x, Ix} < h
A'(x) =0 at fxf=h

(169a)
(169b)

B’ (x)+4B(x) =0, x| < h
B(x)=0 at x| =4

(1704)
(170b)

C'(x) =0 at |x] = h (171b)

D’ (x) = yU, sin 2x, x| < h
D'(x)=0 at |x| =h)’

(172a)

C"'(x)+C(x) = 2, sin x, [x] < lz} (171a)
} (172b)
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The solution of (169a) satisfying the imposed boundary condition (169b) is obtained as

.3

7 U
A(x) = — LI—GQ (sin 2x—x cos 2x) (173)

while (170a. b) is easily shown to give
B(x) = 0. (174)

Then eqn (172a). on account of (172b), integrates to

.

U=
D(x) = — ’8—"(sin Ix+2x). (175)

It is clear that the term in C(x) in (168) contributes at the fundamental frequency (here
one) so that the integral of eqns (171a.b) provide the most interesting term for the effect
called anisochronism. The solution of eqn (171a) is butlt of a particular solution, say C”(x),
of the complete equation, and a gencral solution. say C“(x), of the homogencous equation.
The latter we take as C“(x) = U, sin Ax, where A is a perturbed (about one) wave number
defined by

A=1+3d, (176)

If 8, = 0, the solution C¥(x) of eqn (171a) satisfics the lincar approximation. 11 3, # 0,
then eqn (171a) is approximately satisficd and, substituting tor the total solution
C(x) = CH(x)+ CU(x) in the imposed boundary condition (1 71b), we obtain that J  satislics
the following condition :

Up(14+3) cos (1+3)h+¢,Uph sin h—1,, U, cos h =0, (177)

But C’(x) =0 at |x| = &= n/2 for the partial mode of the first order, and since J, is
assumed to be small we can use the approximation cos (1 +3,)h ~ —é & which, inserted
inegn (177), delivers d, as

S, =¢,. (178)
This small quantity is the alteration in the fundamental mode of vibrations of the resonator
resulting from the nonlincar magnetocelastic properties of the body. It varies like the square
of the bias magnetic field and ts directly proportional to the magnetoacoustic coupling
coefficient, eqn (32), which usually causes a reduction in the speed of elastic waves in
magnetostrictive materials. This effect is also obvious in the solution (128). For an aniso-
chronism due to nonlinear elastic propertics only, one must proceed to the elastic solution
up to the order of ¥ (compare Planat, 1984 ; Maugin, 1985). A more involved study of
the nonlinear vibrations of magnetostrictive elustic resonators shall be given later on (Abd-
Alla and Maugin, 1988).
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